Isomorphic trivial extensions of finite dimensional algebras

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graded self-injective algebras “are” trivial extensions

Article history: Received 20 March 2009 Available online 9 June 2009 Communicated by Michel Van den Bergh Dedicated to Professor Helmut Lenzing on the occasion of his seventieth birthday

متن کامل

Characterizing Tolerance Trivial Finite Algebras

An algebra A is tolerance trivial if Tol A = ConA where Tol A is the lattice of all tolerances on A. If A contains a Mal'cev function compatible with each T Tol A, then A is tolerance trivial. We investigate nite algebras satisfying also the converse statement. Let R be a binary relation on a set A and f be an n-ary function on A. We say that f is compatible with R or that R is compatible with ...

متن کامل

On permutably complemented subalgebras of finite dimensional Lie algebras

Let $L$ be a finite-dimensional Lie algebra. We say a subalgebra $H$ of $L$ is permutably complemented in $L$ if there is a subalgebra $K$ of $L$ such that $L=H+K$ and $Hcap K=0$. Also, if every subalgebra of $L$ is permutably complemented in $L$, then $L$ is called completely factorisable. In this article, we consider the influence of these concepts on the structure of a Lie algebra, in partic...

متن کامل

Ja n 20 06 Cluster - tilted algebras as trivial extensions

Given a finite dimensional algebra C (over an algebraically closed field) of global dimension at most two, we define its relation-extension algebra to be the trivial extension C ⋉ Ext 2 C (DC, C) of C by the CC -bimodule Ext 2 C (DC, C). We give a construction for the quiver of the relation-extension algebra in case the quiver of C has no oriented cycles. Our main result says that an algebrã C ...

متن کامل

The $w$-FF property in trivial extensions

‎Let $D$ be an integral domain with quotient field $K$‎, ‎$E$ be a $K$-vector space‎, ‎$R = D propto E$ be the trivial extension of $D$ by $E$‎, ‎and $w$ be the so-called $w$-operation‎. ‎In this paper‎, ‎we show that‎ ‎$R$ is a $w$-FF ring if and only if $D$ is a $w$-FF domain; and‎ ‎in this case‎, ‎each $w$-flat $w$-ideal of $R$ is $w$-invertible.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2006

ISSN: 0022-4049

DOI: 10.1016/j.jpaa.2005.03.014