Isomorphic trivial extensions of finite dimensional algebras
نویسندگان
چکیده
منابع مشابه
Graded self-injective algebras “are” trivial extensions
Article history: Received 20 March 2009 Available online 9 June 2009 Communicated by Michel Van den Bergh Dedicated to Professor Helmut Lenzing on the occasion of his seventieth birthday
متن کاملCharacterizing Tolerance Trivial Finite Algebras
An algebra A is tolerance trivial if Tol A = ConA where Tol A is the lattice of all tolerances on A. If A contains a Mal'cev function compatible with each T Tol A, then A is tolerance trivial. We investigate nite algebras satisfying also the converse statement. Let R be a binary relation on a set A and f be an n-ary function on A. We say that f is compatible with R or that R is compatible with ...
متن کاملOn permutably complemented subalgebras of finite dimensional Lie algebras
Let $L$ be a finite-dimensional Lie algebra. We say a subalgebra $H$ of $L$ is permutably complemented in $L$ if there is a subalgebra $K$ of $L$ such that $L=H+K$ and $Hcap K=0$. Also, if every subalgebra of $L$ is permutably complemented in $L$, then $L$ is called completely factorisable. In this article, we consider the influence of these concepts on the structure of a Lie algebra, in partic...
متن کاملJa n 20 06 Cluster - tilted algebras as trivial extensions
Given a finite dimensional algebra C (over an algebraically closed field) of global dimension at most two, we define its relation-extension algebra to be the trivial extension C ⋉ Ext 2 C (DC, C) of C by the CC -bimodule Ext 2 C (DC, C). We give a construction for the quiver of the relation-extension algebra in case the quiver of C has no oriented cycles. Our main result says that an algebrã C ...
متن کاملThe $w$-FF property in trivial extensions
Let $D$ be an integral domain with quotient field $K$, $E$ be a $K$-vector space, $R = D propto E$ be the trivial extension of $D$ by $E$, and $w$ be the so-called $w$-operation. In this paper, we show that $R$ is a $w$-FF ring if and only if $D$ is a $w$-FF domain; and in this case, each $w$-flat $w$-ideal of $R$ is $w$-invertible.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2006
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2005.03.014